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ABSTRACT

The mathematical relationships for filtering in a space
domain are developed in a general analogy with temporal filtering.
Cases in which the elements of the filtering system are continuous

or discrete are discussed. General examples of spatial filtering
and the realization of such filtera are shown.

ii




L g e e e

TABLE OF CONTENTS

CHAPTER 1 -CONTINUOUS FUNCTIONS

CHAPTER II- DISCRETE CASE

CHAPTER 1II - REALIZATION OF SPATIAL FILTERING

CHAPTER IV - SPATIAL FILTERING WITH FEEDBACK

CHAPTER V - CONCLUSIONS AND RECOMMENDATIONS

BIBLIOGRAPHY

i1

38

42

45

46

L)




e

| e I ety

RS e T

pomy pumay Sy pEmey FENG PEEN W PN pUwy P

FOREWORD

This report was prepared by The Ohio State University Antenna
Laboratory, on Air Force Contract AF 33(616) -7843, under Task Number
50682 of Project Number 1(620-4144), "Guidance and Sensing Techniques
for Advanced Vehicles'. The work was administered under the direction
of Navigation and Guidance Laboratory, Aeronautical Systems Division,
Alr Force Systems Command, United States Air Force, Wright-Patterson
Air Force Base, Ohio. The task engineer for the laboratory was
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CHAPTER 1
CONTINUOQUS FUNCTIONS

A. Introduction

Spatial filtering is a method by which a particular object or set
of objects may be highlighted so that detection is improved with a
minimum lors of information. When a signal is applied to a device
which changes the characteristics of this input signal, a filtering
process has been performed. Spatial filtering thus implies that a
fieldis processed to create a new field. The desired relationship
between the new and the original fields specifies the nature of the
filtering to be accomplished.

There is a close analogy between linear spatial filtering and
linear temporal filtering; however, many of ths restrictions of
temporal filtering do not apply to spatial filtering, such as:

1. The output signal in a time filtering circuit cannot appear
until the input has appeared. No such limitation applies to spatial
filtering.

2. Spatial filtering techniques may be applied to any number
of dimensions.

It is thus apparent that spatial filtering is inherently more flexible

than time filtering.
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B. Impulse Response

wglt) [, | heh et

Fig. 1. Temporal filter.

Figure 1 represents a temporal filter in which time is the single
independent variable. u,(t) represents a unit impulse and h(t) is the
characteristic time response to a unit impulse, If the filter A is linear
and stable, superposition principles may be applied and the relation-
ship between an arbitrary input or reference signal r(t) and the filtered

output signal c(t) can be characterized by a superposition integral:
+x

(1) c(t)=§ r(t) h(t-v)dn~
-~

It can be shown that the Laplace transform of r(t) and c(t), designated

as R(S) and C(S) respectively, are related by an equation of the foim:
(2) C(S) = H(S) R (S)

H(S) is normally referred to as the transfer function of the filter and is
the Laplace transform of h(t), Thus by means of the convolution
integral in Equation (1), the output can be determined in real time by

using time functions rather than frequency functions.
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In a more general view, filtering may be considered for a source
signal with more than one independent variable, as for example, x and
y spacec coordinates. Such a filtering device may be a lens or similar
optical device in which the spatial features of the object, such as the
radiance, determine the output image. As stated previously, spatial
filtering techniques may be applied to three or more dimensions; how-
ever, the concepts developed here will be limited to two dimensional
signals as a matter of convenience,

Let r and ¢ be considered now as functions of x and y ,
where r is again the reference or input signal and c is the output or
resultant image. The convolution or superposition integral for a filter

which is linear and independent of x and y is given by:

+

©0

r (x’, y/) h (x - x’,y - y/)dx’dy’

+

(3) C(x9Y) =

h(x,y) is the spatial impulse response of the filter, Note that the
integrals range from -« to +«,

C. Frequency Response

The frequency response of continuous functions may be deter-
mined by means of either the Fourier transform or the Laplace trans-
form. It is usually more advantageous to use the Fourier transform in

a general case because the range of the integrals includes the negative
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region as well as the positive region. The Fourier transform for the

temporal case is defined as:

+ o0 .
(4) F(jw) = S £(t) e “tat

- ©

The Fourier transform of r(x,y), c(x,y), and the impulse response

h(x,y) can be written:

(5) C (Jug + Juy) = Rljog » Juy)Hjug » Juy)

Here w, and wy are termed spatial frequencies. The transforms are

determined from Equation (4), as for example:

+o00 +oo
(6) H (jux, Jwy) = S S h (x,y) e-j(wxx +wyy) dx dy

X = -0 y= 0
Because of the two-sided nature of the transforms, initial conditions
are not considered.

The inverse transform of C(juw, , j““y) is given by:

o1 . . +j(wyx +w,y)
(1 elxny) = —= gg Cliug » Juy) © ATV

The problems of determining either the direct or inverse transforms
are greatly simplified if the variable r and h can be written in
product form

(8) T(x,y) = ry(x) ry(y)

— e
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(9) h(x,y) =hy(x) by (y)
or as sums of products

(10) £(%,5) = ) ) Fnelx) Tmayly)
nm

(1) h(x,y) = hpy(x) hy (y)
L gt

The transform of Equation {9) for example is then given by

+ o [ .
(12) Hijor  doy) = | § Byta) 3 ol ('m0 8*Y ey

and the transform of c becomes simply
(13) Cliwgs Juy) = Fi (jug) Fa (juy)
where F; is the product of the transforms of r,(x) and hy(x) and F, is
the product of the transforms of ry(y) and hy(y) « Unfortunately,
separation of the functions is not always possible, Transforms such as
Equation (12) can be found in the conventional transform tables and are
generally double-sided transforms.

D. Spot Size

A spot can be considered as a continuous function of x and y .

An electron beam #triking the face of a cathode ray tube is an example
of point sources acting on a medium and the response can be described
in x,y coordinates as :

(14) h(xyy) = e S HYY)

2
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In order to determine the spatial frequency response of the tube,

H{jwy , jwy) must be determined.
+ o
~k(x? + y? -
(15) Hijog joy)= [ (7007 Sty o g
(%

This can be separated as

+ o +00
mky2 By -(kxz-ﬁ-' x) -jw
(16) Hljuy, juy) = S’ e 5 e Juxx) I -JuyYay
-0 - 00

Now, it is known from the Gaussian distribution function that the

following relationship exists:

xZ

202

] tw
17 T dx =1
(17) \lZ‘h’ T S‘ ¢
-c0
Equation (17) can be used to evaluate Equation (16) if we let 202 =1.

Then ¢ = \11/2

and +
1 et -l

(18) —_ gexdle

& () e
or

+ 2
(19) S‘ e ax = 7

+ o0

dx| in (16)., Let x =a +z,

~(kx? +j
Consider the bracket term S‘ e ( Juy X)

=00
then dx = dz and
2 . - 2 2 . .
kx® +ju x =ka? +2azk+kz® +ju, a+ju, z

6
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Let Zakz+ijz=0,ora=-j%(
w 2
Then kx’ +ju_x = ka? + _4’1‘(_
The bracket term then becomes
w 2
4+ uxz -X 4w 2
- 2 —_— k v =kzZ

(20) Se(kz +4k dz = e 4 Se dz

- .

Let
k=r?2 and kz? = r? z2 = m?, then dz = —
w2 wxz
== 4 .
; 41'2 2 4r2
(&1) e—-:—— Sem dm = E L
r ~ r
or o 2
- X
(22) \Fr- e 4k
Jk

The same operation performed on the y terrrzxs yields
w

+ -
2y -(k 2 + 3 4k
(23) 3 e ( Yy Jwyy)dy - J‘ﬂ' e
e B3
Thus 2
((wy +wx’ )
i 4k
(24) H (Jug juy) = 5=
k



CHAPTER 1II
DISCRETE CASE

In any filtering process, the characteristic response of the
filter to a unit impulse is used to determine the output for an arbitrary
input signal. In a discrete filter, this characteristic response is
defined as a matrix A = [apq] . Since p and g can have both positive
and negative values, conventional notation cannot be used in which the
upper left matrix element is designated as aj; . It is therefore neces-
sary to indicate the values of p and q for at least one position in the
matrix. In the convention used here, each matrix position is divided
diagonally, with the position notation in the upper left segment and the
element value in the lower right segment. Thus a typical A matrix

could be that shown in Figure 2.

Fig. 2. A Matrix for spatial filtering.

In Section I, the case of continuous functions was treated wherein
the object, filter, and resulting image were each continuous in x and
y . The spatial filtering techniques described in this section will make
use of the discrete A matrix as a filter; however the object and image

may be either discrete or continuous.

|
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Before discussing the filtering process itself, it is worthy to note

some of the characteristics of this A matrix,

1. If the ? ? apq = 0, there is a zero average value for the
P q

output when this matrix is used as a filter. In other words, the dc
level is not passed in such a filter.

2. If the }- E apq # 0, the dc level is passed and the image will
have an averagepval?xe taken over all cells which is not equal to zero.
3. Certain configurations of values in the A matrix permit

expressing the matrix as A = MN, where M indicates a column
matrix and N indicates a row matrix. (The proof of this is in Section
II B.) If this is possible, the terms can be treated separately as
functions of x only and functions of y only., As a matter of con-
venience, the discussions which follow will be restricted to this type
of matrix.,

An example of 3 above is shown in Figure 3,

N -

Y Apg=0
Y. Pq

11
L 2

|
*a
(@) A Matrix As A Column (b) Resultant A Matrix
And Row Matrix
Fig. 3. Factoring an A Matrix.
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A. Discrete A Matrix, Continuous Object and Image

Y !

o(x,y) 1(xy)

Xy

A Matrix

Object image

Fig. 4. Filtering a continuous object.

An individual scene can be described completely as far as the
spatial distribution of radiance is concerned. The two dimensional
function R(x,y), where R is a radiance, gives all the available
information. The information is usually collected by some type of
sensor which is limited in the resolution of surface detail, This
characteristic of the sensor will be defined here as the cell size of the
sensor. The cell dimensions will be defined as the minimum size of
cell such that two identical objects, each located in a similar position
in adjacent cells, will always be separated or resolved by the sensor.
In the case of a ground-based radar, the cell size is given by c¢t/2 in
range and rA ¢ in azimuth, where c is the velocity of light, T is the
pulse width, r is the range, and A¢ is the beamwidth of the antenna in
azimuth. In the case of the image orthicon or similar optical trans-

ducers, the cell size must be defined in terms of the size of the electron

10
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heam used to scan the image projected upon the sensitized surface
within the pickup tube.

Figure 4 depicts a continuous object which is to be filtered by the
discrete A matrix. This continuous object, O(x,y), may be pictured
as an aerial view of terrain in which contours are functions of x and
y; or intensity levels in an infrared photograph would yield continuous
functions of x and y. The resultant image‘ is labeled I(x,vy).

In order to perform spatial filtering on this continuous object,
Ofx,y), two approaches may be considered.

1. The object may be sampled to yield discrete values for the
X, y positions. This quantized object may then be operated upon by
the A matrix using a convolution process to produce a discrete image

I{x,y). This convolution process is discussed in Section II B. By use

8in x
x

of a

type filter or a holding circuit, the discrete image can be
changed to a continuous function. It might be pointed out that thé human
eye cafli also perform this discrete-to-continuous operation as evidenced
by a photograph in a newspaper, which is made up of a large number
of closely spaced dots, appearing to be of a continuous nature when
viewed from reading distance.

2. The A matrix may be transformed into a continuous function
by describing it as a series of step functions. The filtering process is

then the same as in Section I where the object and filter were

1



continuous. As an example of this process, consider the A matrix in

Figure 3. This can be represented as :

h(x) or h(y)4
E

| xory

Fig, 5. The A Matrix described as step functions.

The equations may be written for Figure 5 as:

: B 5 : e i3
(25) H_(ju ) = ()% - eTIx) 1 (&P IVx) L 1 (e TIUxL T e
LLwy) = .

Jwy

Collecting terms

(26) H, (juoy) = = elox - Ton | g [ I3ex I
e e e ;
X )
2 Jwye 2 i Jw
(27) Hx(j‘*’x) =3 sin wy } sin 3 wy
wx 3wx

Hy(jwy) is obtained here by substituting Wy in Equation (27) for w,

since the matrix is symmetrical about the center cell. This expression
illustrates how the x and y spatial frequencies are filtered. It corre-

sponds roughly to a bandpass filter except that it introduces no phase

shift, The function is sketched in Figure 6.
12
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H(jwy) OAI' H(jwy)
3 e

2

Fig. 6. Frequency response of the A Matrix
as a function of wy or wy.

To determine I{x,y) when using this filter, the Fourier trans-
form of the object, O(jwy » jwy) , is determined as described in Section

I,
+ o

(28)  Oljuwy » Juy) = S S‘O(x.y) e-—j(wxx ¥ wYY)dx dy

(29)  I(jwy, jwy) = H(jwy » J'wy) Ojwy » Juy)
+ oo

_ 1 o Jlwy x + wyy)
(30) I(XDY) = (&w)z SLOSO‘ I(j x ? Jwy) e dux dwy

Before method 1 above may be employed, the continuous object
must first be sampled. It must be kept in mind that the sampling

frequency must be at least twice the highest frequency of the input

13
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signal in order to recover the full information content with a linear
device which can separate only on the basis of differences in the

frequency spectrum. In a spatial object, the variations in the x,y )
plane correspond to amplitude variations in a time signal, which is

one dimensional.

.~ re(t)

Fig, 7. A simple sampler.

Consider a simple time sampler as shown in Figure 7.

Figure 8 depicts sampling as modulation of a pulse train where the
amplitude of the sampler output is derived from the value of the input

signal at any given time. An impulse occurring att = nT would have

2 Laplace transform of

(31) Llug(t - nT)] = ¢TS5,
rt) i(t) rs (1)
t HEEEEL | t
y L
A\ > t2t3f4t5|t "fztst]"
(a) Sampler Input (b) Pulse Train {¢) Sampler Output

Fig. 8. Sampling considered as modulation
of pulse train.

14
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This is seen to be a shifting function, or delay. Thus the sampler

output at t = nT would be r(nT)e-nTs

+ The shifting function form is
used in the Z transform by defining
(32) z = 7T

To sample the spatial object, the same sampling method may be

used except that two dimensional shifting is required. In this case, the

shifting function Z is defined as

S, AY
(33 - 2z, = eSx 8% and z, = e

where AX and AY are determined by the sensor resolution.
Now the image, Im n’ which results from a sampled object,
? B

Om,n? and a discrete filter can be expressed as

(34) Irn,n = EZ om-k,n-p 2k ap
k p

where a; and a, may be considered as weighting functions derived
from the impulse response of the A matrix filter. Only symmetrical
discrete filters are considered in the derivations here and the
weighting functions can therefore be treated igdepend.ently. A spatial
filter will usually be symmetrical to avoid undesired distortion of the
object. It must be remembered that a filter is designed to produce a

desired output from a given input.

15



Z transforms may be used to describe the shifting and the trans-

form of the object becomes
R\ -m _-n
(35) Gl 2y, Zy) = Z 2 Om,nzx Zy
m n

The transform of the image is

-m _-n
36 yZ ) =
(36) GZe2) = Y Y1 27z
m n
The weighting functions of the filter become
' -m
(37) A (Z)) =zamzx
- m
(38)° A(Z)=Ya 2"
VAR A S
n
Then
(39) Gyl 2,0 Zy) = AL (Z)A (Z0)Go( 2y, Z.)

As an example of this type of transform, consider the A Matrix

used previously in Figure 3. The Z transform would be

+1

-1 o)
(40) A(2Z)=-32 +12 *-32Z,

Ay( ZY) would be the same except for subscripts,

(Zx - 1)2

ZX

(41) A(Z) =-3

16
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(42)

(43)

(z, -1)°
AY(ZY).-%[ yzy ]

(2 - 1% (Z,-1)

AlZ )AL (Z) = & [ z .
x Yy

17

‘]



B. Discrete A Matrix, Discrete Object and Irnaj_e_

el ]
ol Sensor el % >
RERUVARRE
e f Filter
]! A Matrix
Photograph Discrete Object Discrete image
X Matrix Y Matrix

Fig. 9. Filtering a discrete object.

Consider a system such as that shown in Figure 9 where an
object, such as a photograph, is scanned by a sensor. The output
of the sensor is sampled as described in the previous section to yield
discrete values for each cell in the storage location, which shall be
called the X Matrix., Each position of this X Matrix then corresponds
to an x,y position in the original photograph and the value of the cell
corresponds to the amplitude of the photograph (for example, the
intensity) at that position, It can be expected that noise will be intro-
duced along with the signal so that ideal values as shown in the
discrete object will not be realized . Filtering by a discrete A Matrix
filter will produce a discrete image, which shall be designated the
Y Matrix.

The system in Figure 9 could be reduced by performing the

desired filtering as the information is being stored in the X Matrix,

18
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but it seems more convenient to explain the filtering action in the
system as shown. Thus, the system now consists of a discrete object,
filter, and image,

As mentioned before, the characteristics of the spatial filter are
based on the desired final product - the image. Functions which can be
performed spatially include averaging, differentiation, and integration.
Use is made of averaging to remove fine detail of a field but extended
structure is retained. Differentiation can be used to retain sharp
boundaries while the background is removed.

The Y Matrix will have the same number of rows and columns
as the X Matrix but it will contain the desired features of the X Matrix
with' the redundancies and undesired information removed. The inform-

ation stored in cell Yij of the Y Matrix may be expressed by

(44) yij=zZapqxi+p.j+q
P q

It can be seen that this requires a shifting process. For this purpose
a shifting matrix may be used by defining

1, i=j-¢g

0, otherwise
where g is a constant integer which can be either positive or negative.

The shifting direction is determined by the sign of g and whether Sg

19



occurs before or after the matrix to be shifted. As an example:
B=S
g Cc

or
blk =z SiJ Cjk
J

By the definition of s

ij’ the only term which has a value is the one for

which j=1i+ g ; thus
blk = ci + g,k
When

B .= CSg , bkj =z Cxi sij = ck,j - g
1

With g a positive integer, it can be seen that when the shifting matrix
appears first, the resultant matrix Ais ideﬁtical to the original matrix
except that all elements have been shifted up g rows with g rows of
zeros at the bottom of the resultant matrix. When Sg appears after the
original matrix, the resultant matrix elements have all been shifted g
columns to the right with g columns of zeros on the left. S, is the
identity matrix.

To demonstrate this shifting operation, take the case fornegative
shifting by letting g = -1.

B = S-l C blk = ci-—l,k

20
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0 0 0 of 1 2 3 4 0 0 0 0

B 1 0 0 O 5 6 7 81 . |1 2 3 4

= o100 9 1011 12 5 6 7 8

0 01 O 13 14 15 16 9 10 11 12

Note that C has been shifted down one row to form B.
B = CS_l bkj:ck,j'f'l

1 2 3 4 0 0 0 O 2 3 4 0

B = 5 6 7 8 1 0 0 of _ |6 7 8 9

- 9 10 1 12 01 0 O 10 11 12 0

1314 15 16 0 01 0 14 1516 0

Note that C has shifted left one column to form B.
Thus, column and row shifting of the X Matrix can be performed
by the process

Sp XSq

which shifts the original X Matrix up p rows and q columns right
{p and g positive integers). Equation (44) can therefore be written in

matrix form as

(45) Y = z E 35q Sp XS_,q
P q

As stated previously, and shown in Figure 3, certain arrange-~
ments of the A matrix elements lend themselves to column and row
factoring. If such is the case, so that A = MN, where M = mp.i is a

column matrix and N = n, q is a row matrix, Equation (45) can be

expreased in the form

21



(46) 2 2 m S )(S_qnq
P q

since a'pq = mpnq « The summations are now independent of the matrix

multiplications so

P q
or
(47) Y=A° X &
when ‘ - - |
=§:mpSp a.rfd At =zs_qn(1
P . q

It is usually desirable to find a single A matrix which performs the
same function as the sequential application of A° and A! . This can be
symbolized by
o
(48) A=A x A
The * operation must satisfy the operations for an X = Xnq matrix
such that
l, p=a;q=0»b
x =

Pq 0, otherwise

When X is operated on with A only, the following result is obtained:

Ya-i,b-j 22 z ®pq a-i+p,b-j+q " %ij
P q

22
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An operation on X with A® and Af yields

[+]
Ya-i,b-j = Z Z‘u,v z Za'c,d ¥a-i+utc,b-j+v+d
u v c d
= zz a® at .
: u,v “i-u,j-v
u v

Therefore

.- . T o
(49) . a'ij 'z Eau.vai-u. j=v
o u v
It is thus seen that for A = A® % A, the * operation is a two di-
mensionai convolution operation.
If A% and A’ are both factorable into one row and one column
matrices, so that A° = M°N® and A!' = M!N!, then the convolution of

A° and A! may be expressed as

hal
= O O mit. t, o
aij -z Zmu ng m'y_yntoy

Since the summations are independent

a.. = > m°mt n°®nt =m.n
ij u i~ n j-v 175
u v
where
m, = Ym° mt and n. = n® n:
1 u 1-1 . J v j-v

'The resultant A matrix can therefore be expressed as A = MN . The

23



A matrix is thus factorable when A® and At are factorable and the
elements ay; of the A matrix can each be obtained by a one-
dimensional convolution,

Desired information can be stored in the Y matrix of Figure 9,
while undesired informatioa is rejected, i)y selecting a specific A
rf;atrix to perform the Arequired filtéring. It was shown in Figure 6
that fiit:ffring comparable to a bandpassl temporal filter couid be -
obtained from an A matrix such as that shown in Fig. 3. A low pass
filter C'al:l likewise 1.3e cievised.whigh will perform a smoothing (or

averaging ) function, Consider a normalized A matrix of the form

C ) T o 'l:l'-ml-l.l'
3] o3 3. 3, s,/ s/ "3
N | o:./1o.0/ o, T -
= i ey 4B My A
3 +§ +-§ +§ Pg Pa
| WL |,c1_, I,Ll

L 3_ 9 9 9

(a) Factored Form Of (b) A Matrix

The A Matrix

Fig. 10. A Matrix for spatial smoothing.

The low pass characteristic may be seen from its continuous form

as developad in Section II A, pages 11, 12 and 13 .

24




4 § hix)or hly)
N -'
N il -
'l ] F 1l 4» x °r
= F o o 1 2 3 y
l Fig. 11. A Matrix described as step functions.
I j3 -j3
) 1 eJ Wx | e Jowx
. I (50) H(jw,) = 3 { o,
. sin 3w : . sin 3w
l (51) H(jug) = 2 2022 5 H(uy) =220 0y
' s 3wy vy wy

I H(jw,) 01{ H(jwy)

l 2

| -

Wy or wy
[ /lr_ 0 K
3 3
| Fig. 12. Frequency response of A Matrix as
a function of wyx or Wy

] ‘ A

L It can thus be seen that an A matrix of the form shown in Figure 10

B will exhibit low pass filter characteristics.

5

Gradient information can also be obtained by the form of the A

25
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matrix, For one-dimensional spatial differentiation, consider the
cells of the A matrix as having a center-to-center spacing of one unit.
To.store gradient information in the Y matrix, it is necessary that

X341 7,5
5 . R Rl & .
( 2.) ’ Yij Au

where Au is the spacing between columns (and equal to one). If

Av =1 is the spacing between rows, two dimensional gradient inform-=-

ation may be obtained by

15N 41,57 %, 5!
. . = . . +
i, ] 2 Au ©Av

1 Ly 1 s
X5, 5t e X, 41 e R 4,

(53) ’ ) Yi:j = Au
. L u

An A matrix which will perform the operation in Equation (52) would
be as shown in Figure 13 (a). The two-dimensional form in accordance

with Equation’ (53) is shown in Figure 13 (b).

- n T 1

. 0, o" ? ] '

o] o - + = 0 ° ', |
. , L/ 4 -1 /47

" t,0 I i,
+2|1/ 0

o | .

L J (a) A Matrix For (b) A Matrix For

One-dimensional Two- dimensional

Spatial Differentiation. Spatial Differentiation,

Fig. 13. A Matrices for differentiation.
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The cells values correspond to the coefficients in the equations and

the cell positions to the subscripts (xij is the 0, 0 position).

Consider the advantage of using a one -dimensional gradient type

"filter where the X matrix has large areas of redundancy. For example;

S _ clefelefe e olojlo]olo]o]-i
' IRERERER RN} -{ojojojojojo}-l
. 111 lololo i1 ol-1]o o+ ]o]-i
..+| Lijriojolo]i]t- ol-1{ojol+]o]-I
: t{1.[o]ofo] ]! ol-t{ofo [+ |o]-i
. A Matrix fefrfor e olojolo|olol-i
R BRI lolotojo|olo|-i
X:Mo"rix. e . . Y Matrix

Fig. 14. .Exa.rx_uple‘ of 6’i1e-dimér;siona1 gradient storage.

A row through the centers of the X and Y .x"na:tri_ce_s would appear as

.sh;')\',v.n' in Figure 15. The -l in the far right column of the Y matrix is

" created by the boundary of the matrix and in a..la.rge' field it would not
. be cox'xsi‘(iei'e'.d; It can be seen that information is stored in the Y matrix
. only when there is a change in levels betﬂaveen adjacent cells in the X

- matrix. Henceé redundancies are eliminated.

Further examples of spafial filtering with a discrete systenﬁ are

" shown in the following section.
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Fig. 15. Result of spatial differentiation.

“C. General Examples

The application of the A matri;c in Figure 16 to an X matfix,
which has a constant background level, is shown for two cases in
the following figures. In Figure 17, combinations of éingle elements
which differ from the background are to be filtered. In Figure 21,
vertical, horizéntal. and diagonal lines are shown against the constant
background. The shaded X matrices in Figures 17 and 21 may be
considereci as "pictures' containing discrete objects or lines against a
constant background. These ''pictures' are given a relative intensity
value for each cell, just as would be done in a sampler (Figures 19

and 23). The filtering action of the A matrix is shown in both ''picture"
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and "numerical intensity'" form in the Y matrices of Figures 18, 20,
22, and Z4. In the "pictures', the highest intensity is considered as
white a.nci the lowest intensity as black, Thus, the Y matrix "pictures"
are actually relative intensities, with white and black as the bounds.
The ''numerical inténsity" figures for the Y matrices have beeﬁ derived

from the relationship discussed in Section II B and repeated here for

Yij =z zapq *i+p jtaq
The periphery values in thé Y matrices should be disregarded as they

have little kneaning. In the calculation of Vijs the value of zero was

taken for any element outside of the afray. For a picture of large .

extent, these bounda'ries would not be so evident.

Fig. 16. 'A Matrix for spatial filtering.
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Fig. 17. X Matrix.
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Fig. 20. Numerical intensity Y Matrix for Fig. 18,
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Fig. 21. X Matrix,
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Fig. 22. Y Matrix which results after filtering Fig. 21.
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Fig, 23. Numerical intensity X Matrix for Fig. 21.
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Fig. 24. Numerical intensity Y Matrix for Fig. 22,
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CHAPTER III
REALIZATION OF SPATIAL FILTERING

. At the present time, all sensors which detect spatial-type

information must scan the area of interestin some prescribedmanner

. and the resulting information appears as a signal at a set of terminals

wifh a single independenf variable, namely time. If the original field
v'a.l".iest as a_function of .time;- each frame produced in the scanning
précéé_s is essentially a single samplé (samples in time) of the field.
Becéusg thé ‘area scanned. u'sqally has th ‘spatial coordinates, it is
necessary to establish a raster which defineé the -path followed by the
sensor in scamﬁng the area. This _'r'asteir indicates the manner in
which the area is sampled spatially. In spatial filtering, it will
éeneialiy be neéessary to store at least a section of the image. This
can be accomplished ’dypamically by delay lines of va;ioua types, or

by static means of storage such as magnetic cores, drums, or tapes. -

A, 1.._e_ri§ System

1. Mechanical Scanning
By mea—ﬁs of polarizing devices, the intensity of incident light
can be varied. Consider the form that an A filtering matrix assumes -
each céll has a disvcrei.:e value. If an obj;ct (picture) has different-
light intensity levels corresponding fo its feature; (forﬂexample, a.

television picture of a statiohary scene), the light intensity from any




segment can be varied by polarization. As mentioned previously, a
scanning process is required for spatial filtering.

A lens consisting of discrete segments, in which the orientation
of the polarizing devices is varied to produce the relative values
desired in an A matrix, could 'be used to scan an illuminated picture.
A phototube attached to the lens would then sum the output from the
filtered object and store this information in a suitable device (Y
matrix) .

A simplified form of this system is shown in Figure 25. The
cross-hatched areas correspond to 3 , the horizontal-lined areas
to 3, and the clear area to 1l (no attenuation).

By scanning the entire picture and storing the output from each
position on which the filter is centered, a spatially-filtered image can
be realized.

This system has the disadvantage of being extremely slow as

‘each frame must be mechanically scanned before another frame can be

admitted to the filtering section.

2. Electronic Scanning

Another device that appears to have operating principles which
could be adapted to spatial filtering is the charactron tube. This tube
has a matrix through which the electron beam is directed to select

desired characters for subsequent positioning on the face of the tube.
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Fig. 25. Lens system for spatial filtering,
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Now consider a modification to an image orthicon camera tube in
which a matrix is positioned between the cathode and the target. This
matrix could correspond to an A matrix by having each segment
consist of a certain size mesh, Now, if an ele,ct;on beam, which would
completely cover the matrix, (~onsider the A matrix as a 3 x 3matrix
for this case)was directed through the matrix, the number of electrons
going through each segment would be diréctly-pr.oportional to the mesh
size, After passing through the matrix, the*ele‘ctron beam would then
be deflected for the desired raster ﬁsed in scanning thcls target. The
cent@r of the beam would cc.brrespond. to the a‘oo position of the A
matrix and the point upon which it -Qas dire;ted on the target at any
instant of time would correspond to_the"yij position of the Y matrﬁc.
The beam would thus cover 9 normal celis on the target. The number
of electrons in the return beam would then be dependent upon the A
matrix va.lﬁ.es and the charge distribution on the target. This‘ would
provide the desired inuitiplication of all cells adjacent to xij (the
target is the X matrix) by the proper a’pq of the A matrix. The sum-
ming is done by the number of electrons in the return beam. This

would provide a much more rapid means of scanning a target than the

~ previous device consisting of a photo-tube and polarized lens,

¢
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CHAPTER 1V
SPATIAL FILTERING WITH FEEDBACK

If a television camera is placed in front of its monitor so that
the field of the camera exactly coincides with the size of the monitor
screen, an x,y position of the monitor then corresponds to the same
X,y position of the sensitized material in the camera. For example, a
spot in the exact center of the monitor screen would be in the exact
center of the image orthicon photo-cathocde. Transmission by the
camera would place the spot in the same original position on the
monitor,

Now if the camera is displaced either to the right or left, a
series of spots will be shown on the monitor with spacing between
the spots equal to the camera displacement. This may be shown by a

top view of the camera and screen:

I L
O\ Point

\ Source = vV i

Camera —-leL— —-‘Axr'—

(a)No Displacement  (b) Camera Displaced (c)Camera Displaced
To The Right To The Left

Fig. 26. Top view of camera and monitor screen
for spatial filtering with feedback.
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This system is shown in Figure 27 as a servo diagram, Laplace trans-

form for the transfer function is used.

R(Sy) G(Sy) CiSy)
Ke tAx SX

Fig. 27. System servo diagram,

When the camera is displaced to the right a distance AX, the spots

are displaced to the left by an amount AX. There is thus a shifting

function e . For camera displacement to the left, the shifting

- A XSy

function becomes e . The closed loop transfer function becomes

+AX
ke Sx

AXSy

(54) C .
Ry

Sy=a +jp

Two-sided Laplace transforms must be used for this system to define
a for each direction, In time systems, instability would occur when
the denominator equals zero. If such were the case here, for the

positive exponent

e+L\X(on +j‘,'3)_1
Tk
iBAY
(e+an)(e.|6 X)=%€ ;B AX=n2n
=) :&
AX



k
’

Since the shifting is to the left, AX can be considered negative and a;
must therefore be positive for convergence of the Laplace integral .
When shifting is to the right AX is positive and o, must be negative
for convergence. Therefore, the region of convergence in the S,
planeis ¢, < 0 £ q; .

Actually instability is not a problem because the system is
bounded. Intensity of the spots cannot increase beyond the percent

modulation of the video signal in the camera for a pure white object,
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

Spatial filtering is a process which may be utilized to highlight
desired features in a field of view. A scanning process, which is a
function of time, is required to process the field and store the infor-
mation in suitable form. It has been shown in Reference 1 that a time
varying signal may be stored in a matrix of transfluxors by signal
steering techniques. Once this information is in matrix form, the
spatial filtering process may be applied to eliminate redundancies,
smooth fluctuations, or select desirable featuree from a background.

It has been shown that time filtering procedures using Laplace
or Fourier transforms may be extended to include more than one
variable, namely space coordinates. The restrictions of temporal
filtering may be overcome with spatial filtering because the space
coordinates may range over all values from plus infinity to minus
infinity,

Spatial filters may be realized by means of lens systems, trans-
fluxors, digital techniques, and other systems. Only two methods
have been discussed here, but it is possible to devise such filters by
any means which can multiply and sum the required elements, It is
believed that the electronic scanning method could provide an ex-

tremely rapid means of accomplishing the desired filtering.
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